
International Journal of Computer Trends and Technology Volume 68 Issue 7, 49-55, July 2020

ISSN: 2231-2803/ https://doi.org/10.14445/22312803/IJCTT-V68I7P108 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Spherical Bitwise Weighted Hamming Distance

Method

Zhen Wang
1
, Baomin Shao

2

1,2
phd, School of computer science and technology, Shandong University of Technology

Zibo, Shandong Province, China

Received Date: 07 June 2020

Revised Date: 23 July 2020

Accepted Date: 25 July 2020

Abstract - In recent years, hashing algorithms that can

map floating point data into compact binary code have

been adopted to achieve the approximate nearest

neighbour (ANN) search task in the Hamming space.

However, binary codes are discrete integer values, which

makes the data pairs with different binary codes would

share the same Hamming distance. To solve the above

problem, the spherical bitwise weighted Hamming distance

(SBWHD) method is proposed to assign different weight

values to each binary bit. Thus, the weighted Hamming

distance can be utilized to distinguish the ranking orders

among the data points which have the same Hamming

distance to the query sample. As the ANN search task

mainly focuses on the samples at the top position of

retrieval results, SBWHD learns the hashing and bitwise

weight functions which obey a spherical distribution.

During the training process, the similarity threshold is

considered as radius, and the nearest neighbours are put

inside the spherical. To further guarantee the ANN search

performance, both the Hamming distance and the weighted

Hamming distance are required to approximate the

corresponding Euclidean distance. During the training

process, SBWHD simultaneously learns the hashing

functions and bitwise weight functions by an iterative

optimization mechanism. When the algorithm converges,

the bitwise weights can effectively improve the ANN search

performance obtained based on the binary codes. The final

comparative experiments in three large scale datasets

prove that the ANN search performance of SBWHD is

superior.

Keywords - approximate nearest neighbour search, binary

code, hashing algorithm, bitwise weight method.

I. INTRODUCTION

Generally, the high dimensional floating-point data is

directly utilized to fulfil the approximate nearest neighbour

(ANN) search task, and the nearest neighbour is returned

according to the Euclidean distance. As the above ANN

search mechanism has high time complexity, it cannot fast

respond to the ANN search task in a large scale dataset. To

fix this problem, hashing algorithms [1-4] are proposed to

encode the raw data into compact binary code. Therefore,

the ANN search task can be achieved based on the

Hamming distance, which has low computational

complexity. According to the training process, the existing

hashing algorithms can be roughly divided into data-

independent hashing [5] and data-dependent hashing [6, 7].

The data-independent hashing algorithm, such as local

sensitive hashing (LSH) [5], randomly generates linear

projection functions and encodes the data according to the

projection results. As the training samples does not involve

in the learning process of the LSH method, the generated

binary codes may not be adaptive to data distribution. Thus,

the ANN search performance cannot be obviously

improved as the length of binary bits increases.

To achieve an excellent ANN search performance

with compact binary code, the data-dependent hashing

algorithms utilize a machine learning mechanism to

generate hashing functions. Spectral hashing [6] and

anchor graph hashing [8] establish a similarity graph and

generate binary codes through the graph partition

mechanism. However, both spectral hashing [6] and

anchor graph hashing [8] demand the distribution of

training samples should be uniform. In practice, the real

datasets do not obey the above assumption. The iterative

quantization (ITQ) method [7] maps the data into the

vertices of a fixed hyper cubic, which leads the encoding

results not adaptive to data distribution. To get rid of the

restriction of data distribution, K-means hashing [9] learns

encoding centres by minimizing quantization error and

making the Hamming distances approximate the original

Euclidean distances by minimizing the similarity loss. The

above-mentioned hashing algorithms [5-9] directly utilize

the data pair’s Hamming distance to approximate their

Euclidean distance. Recently, another kind of hashing

algorithm which aims to preserve the Euclidean ordinal

relationship in the Hamming space is proposed. Minimal

loss hashing [10] defines listwise loss as an objective

function that penalizes the similar data pairs with large

Hamming distance and the dis-similar data pairs with

minimal Hamming distance. Listwise loss hashing [11]

defines the similarity loss function based on triplet

elements, and it requires the Hamming distance of similar

data pair should be minimal than that of dissimilar data

pair. Order preserving hashing [12] divides data points into

different categories according to their distances to the

query sample. During the training process, order-

preserving hashing [12] tries to make the categories in the

Hamming space and Euclidean space be consistent with

each other.

Zhen Wang & Baomin Shao / IJCTT, 68(7), 49-55, 2020

50

Fig. 1 SBWHD iteratively learns the hashing functions and bitwise

weight functions

The binary code methods treat each binary bit equally

and assign them the same weight value. However, the

binary codes have a discrete integer value. As a result,

many data pairs with different binary codes would share

the same Hamming distance to the query sample. To

further distinguish the ranking orders among the data

points which have the same Hamming distance to the

query sample, the bitwise weight methods, such as

WhRank [13] and QRank [14], assign different weight

values to each binary bit [3]. WhRank [13] utilizes the data

pair’s weighted Hamming distance to approximate their

Euclidean distance. QRank [14] aims to learn the query

sensitive bitwise weights.

The ANN search task pays more attention to the top

position of the retrieval results, but the above hashing

algorithms and bitwise weight methods rarely take the

samples’ position into consideration during the training

process. To fix the above problem, a bitwise weight

method termed the spherical bitwise weighted Hamming

distance (SBWHD) method is proposed in this paper.

SBWHD emphasizes preserving the similarity relationship

among the data points at the top position. The learning

process of SBWHD is shown in Fig. 1. SBWHD iteratively

learns binary codes and bitwise weights. When the

algorithm converges, SBWHD can get an excellent ANN

search performance in both the Hamming and weighted

Hamming spaces.

The main contributions of this paper can be concluded

as follows.

1. The samples’ positions are taken into consideration

during learning hashing functions and bitwise weight

functions. SBWHD can well preserve the similarity

relationship among the data points at the top position,

which is consistent with the nature of the ANN search task.

2. Different from the general two-step mechanism,

SBWHD simultaneously learns the hashing functions

and bitwise weight functions by an iterative

optimization mechanism.

3. SBWHD demands the data pair’s weighted Hamming

distance can well approximate their original Euclidean

distance. As a result, SBWHD can fulfil the ANN

search task in the Hamming space.

II. SPHERICAL BITWISE WEIGHTED HAMMING

DISTANCE METHOD

To fulfil the ANN search task, the nearest neighbours

should have a minimal Hamming distance value to the

query sample [9]. In contrast, the distance value between

the dis-similar data point and the query sample should be

relatively larger. To satisfy the above requirement,

SBWHD learns the hashing and bitwise weight functions,

which obey a spherical distribution. During the training

process, the nearest neighbours are put inside of the

spherical, and the dis-similar data points are set outside of

the spherical [1]. Correspondingly, the similarity threshold

is defined as the spherical radius.

A. The ANN Search Procedure in the Weighted

Hamming Space

Given the floating-point data set X={x1, ⋯, xn}∈R
n∙d

(d is the dimension of data point), hashing algorithms map

the data xi into m-bit binary code B={b1, ⋯, bm} according

to the projection sign as in Eq. (1). {f1, ⋯, fm} represent the

linear hashing functions.

 1{sgn(()), ,sgn(())}i m iB f x f x (1)

After mapping the data into binary code, their Hamming

distance can be computed by Eq. (2).

1

(,) () ()
M

H i j m i m j

m

D x x b x b x


  (2)

Based on the definition of binary code in Eq. (1), it is

clearly known that the values of binary codes are discrete

integers, and each binary bit has the same weight value. As

a result, the data points with different binary codes would

share the same Hamming distance to the query sample. A

simple example is given below. If the data points x1, x2 and

x3 are separately encoded as 3-bit binary codes 001, 010

and 100, all the Hamming distances among them are 2.

When querying, the nearest neighbours of x1, x2 and x3 are

simultaneously returned, and it’s hard to distinguish their

ranking orders in the ANN search results. To fix the above

problem, SBWHD assigns different weight values W={w1,

⋯ , wM} to each binary bit as in Eq. (3), and the bitwise

weight function relates to the query sample.

 ()m m queryw g x (3)

According to Eq. (3), the weighted Hamming distance of a

data pair can be computed by Eq. (4).

1

(,) () (() ())
M

W

H i j m i m i m j

m

D x x g x b x b x


   (4)

With the assistance of bitwise weighted Hamming distance,

the ANN search performance obtained based on binary

codes can be further boosted, as shown in Fig. 2. Firstly,

the neighbours with minimal Hamming distance to the

query sample are retrieved. Then, the data points sharing

Zhen Wang & Baomin Shao / IJCTT, 68(7), 49-55, 2020

51

the same Hamming distance to the query sample are re-

sorted according to the weighted Hamming distances.

Fig. 2 The initial retrieval results are re-sorted according to the

weighted Hamming distance

B. The Similarity Preserving Restriction Based on

Probability Statistic

To achieve an excellent ANN search performance, the

similarity relation should be well preserved in the

weighted Hamming spaces [14, 15]. Similar to the SNE

algorithm, the distance values are treated as the similarity

degree, and the probability value pij and qij are separately

utilized instead of the Euclidean distance and weighted

Hamming distance. Therefore, the excellent hashing and

bitwise weight functions can be generated by making the

Hamming and Euclidean probability values resemble each

other.

Here, the Kullback-Leibler is adopted to measure the

mismatch between the Hamming probability values and

the corresponding Euclidean probability values. The

definition is shown in Eq. (5).

,

log
N

ij

ij

i j ij

p
KL p

q
 (5)

During the training procedure, the Euclidean distance

value is directly assigned to the probability pij. Then, the

key problem is how to compute the value of probability qij,

and it will be discussed in section 2.3.

C. Spherical Binary Code and Bitwise Weight

If directly utilizing the objective function in Eq. (5) to

learn binary code and bitwise weights, there exists a

problem as described below.

When xi and xj has a large Euclidean distance, the

learnt bitwise weighted Hamming distance can well

approximate the corresponding Euclidean distance by

directly minimizing the value of the KL objective function.

In contrast, when xj is the nearest neighbour of xi, and they

have a small Euclidean distance value, the KL objective

function always has a minimal value, and it fails to learn

the bitwise weights. Therefore, the objective function

should be re-defined according to the similarity

relationship of the data pair (xi, xj) as in Eq. (6). For dis-

similar data pairs, (dT-pij) and (1-qij) are separately utilized

instead of the original parameter.

1 1

log (,)

() log (,)
1

ij

ij i j T
N N

ij

i j T ij

T ij i j T

ij

p
p d x x d

q
KL

d p
d p d x x d

q

 





 

  
 

 (6)

When the data pairs are nearest neighbours, dT-pij has

a large value. To minimize the objective value in Eq. (6),

the value of 1-qij should be enlarged. As a result, the value

of qij is minimized to satisfy the requirement of preserving

the similarity relationship.

During the training process, the two sub-functions in Eq.

(6) are integrated as in Eq. (7).

1 1

1 1
(log () log)

1

N N

ij T ij

i j ij ij

KL r d d d
q q 

  


 (7)

The constant terms are omitted, and the coefficient r is

employed to balance the effects of similar data pairs and

dis-similar ones. In this paper, r represents the ratio value

between the number of similar data pairs and that of dis-

similar data pairs.

Usually, the value of qij is defined as in Eq. (8).

1

1 exp(2 (,))
ij w

h i j

q
M d x x


 

 (8)

In Eq. (8), M is the number of binary bits, and dh
w
(xi, xj)

computes the weighted Hamming distance between xi and

xj.

Here, the bitwise weighted Hamming distance is

adopted to distinguish the similarity degree among the data

pairs which have the same Hamming distance value. The

weighted Hamming distance between the nearest

neighbour and the query sample should be minimal than

the threshold. In contrast, the distance value among dis-

similar data points should be larger than the threshold

value. To satisfy the above requirement, the distribution of

the data points should be spherical in the Hamming space,

and the similarity threshold value is defined as the radius.

Therefore, the probability qij can be rewritten as in Eq. (9).

1
, (,)

1 max(0, (,))

1
, (,)

1 max(, (,))

i j Tw H

h i j T

ij

i j TH w

T h i j

d x x d
d x x d

q

d x x d
d d x x


  

 
 
 

 (9)

In Eq. (9), max(∙,∙) returns the relative larger value, and

dT
H
 is the threshold value in the weighted Hamming space.

Generally, the value of dT
H
 is set as 2.

D. The Objective Function and Optimization Mechanism

During the process of learning spherical bitwise

weights and binary codes, the definition of qij in Eq. (9) is

utilized to rewrite the objective function as below.

,

,

log(1 max(0, (,)))

1
() log(1)

max(, (,))

N
w H

ij h i j T

i j

N

T ij H w
i j T h i j

L r d d x x d

r d d
d d x x

   

  




 (10)

In Eq. (10), the weighted Hamming distance is computed

based on the binary code, which has discrete integer values.

As a result, it’s NP hard to directly optimize the objective

Zhen Wang & Baomin Shao / IJCTT, 68(7), 49-55, 2020

52

function. To fix this problem, the discrete encoding

function is relaxed to a continuous form, as shown in Eq.

(11).

() sgn()

tanh()

T

m m

T

m

b x u x

u x




 (11)

Based on the definition of binary encoding in Eq. (11), the

weighted Hamming distance is rewritten as in Eq. (12).

 1

1

1
(,) (()

2

() tanh() tanh())

M
h

w i j m j

m

M
T T

m j m i m j

m

d x x w x

w x u x u x





 

 




 (12)

Thanks to the above relaxation mechanism, the gradient

descent algorithm can be utilized to learn the hashing

functions and bitwise weight functions.

III. EXPERIMENTS AND RESULTS

This section introduces a comparative experimental

setting and the ANN search results.

A. Data Sets and Evaluation Standard

The comparative experiments are conducted in three

widely used large scale image datasets, including NUS-

WIDE [16], 22K LableMe [17] and ImageNet 100. To

train bitwise weight hashing functions and evaluate the

ANN search performance, each data set is divided into

three sub-sets, the training dataset, the query dataset and

the test dataset. The training dataset is utilized to learn the

hashing and bitwise weight functions. The query dataset

includes the query samples, and their nearest neighbours

are stored in the test dataset. During the evaluation process,

the nearest neighbours of the query samples are retrieved

from the corresponding test dataset.

The total number of images in the NUS-WIDE dataset [16]

is 270 thousand, and the images are randomly selected

from the Flickr image dataset. For the NUS-WIDE dataset

[16], 190 thousand images are randomly picked as the test

dataset. Correspondingly, 50 thousand images are

considered as the query samples, and the remaining 30

thousand images are utilized for training the bitwise

weight functions and hashing functions in the NUS-WIDE

dataset [16]. 22 thousand images without labels are stored

in the 22K LabelMe dataset, and the number of images in

the test dataset is 20 thousand. 2 thousand images are

utilized as query samples, and 5 thousand images are

randomly picked to learn the bitwise weight functions. 100

kinds of images in ImageNet are randomly picked to form

the ImageNet 100 dataset. The number of the training

images is 30 thousand, and 130 thousand images are

considered as the test dataset. 10 thousand images are

utilized as the query dataset.

To evaluate the ANN search performance, the metric

evaluation recall is adopted to measure the ratio of the

retrieved positive samples to the total amount of the true

nearest neighbours. The definition of recall is shown in Eq.

(13).

#()

#()

retrieved positive samples
recall

total positive samples
 (13)

#(retrieved positive samples) represents the number of

retrieved positive samples. #(total positive samples) means

the amount of the nearest neighbours to the query sample

in the test dataset.

B. Experiments and Experimental Results
The performance of hashing algorithms and bitwise

weight methods is evaluated by performing the ANN

search of images in three widely large scale image datasets.

The experimental results are shown in Figs.3-8.

Fig. 3 The recall curves in the 22K Labelme dataset and 100 samples with minimal distance are defined as the true nearest neighbours.

Zhen Wang & Baomin Shao / IJCTT, 68(7), 49-55, 2020

53

Fig. 4 The recall curves in the NUS-WIDE dataset and 100 samples with minimal distance are defined as the true nearest neighbours.

Fig. 5 The recall curves in ImageNet 100 dataset and 100 samples with minimal distance are defined as the true nearest neighbours.

In Figs. 3, 4 and 5, the 100 samples with the nearest

Euclidean distance to the query image are defined as the

nearest neighbours.

To further prove the stability of the ANN search

performance of SBWHD, the nearest neighbours are re-

defined as the 1000 samples with minimal Euclidean

distance values to the query sample. The recall cures of the

comparative ANN search results are shown in Figs. 6, 7, 8.

Fig. 6 The recall curves in the 22K Labelme dataset and 1000 samples with minimal distance are defined as the true nearest neighbours.

Zhen Wang & Baomin Shao / IJCTT, 68(7), 49-55, 2020

54

Fig. 7 The recall curves in the NUS-WIDE dataset and 1000 samples with minimal distance are defined as the true nearest neighbours.

Fig. 8 The recall curves in ImageNet 100 dataset and 1000 samples with minimal distance are defined as the true nearest neighbours.

The above comparative ANN search results have

shown that the proposed spherical bitwise weighted

Hamming distance (SBWHD) method achieves the best

ANN search performance. Furthermore, two kinds of ANN

search experiments with a different number of nearest

neighbours tell that the ANN search performance of the

SBWHD method is stable.

For the comparative experiments, the baseline

methods include the binary code methods (LSH and ITQ)

and the bitwise weight methods (WhRank and QRank).

The classical method, local sensitive hashing (LSH) [5],

does not own the training process. LSH [5] randomly

generates the hashing functions, which are independent of

the training dataset. As a result, LSH has an inferior ANN

search performance, and its ANN search performance

cannot obviously improve as the length of binary code

increases [6]. To fix the above problem, ITQ [7] and the

proposed SBWHD method learn hashing functions by

machine learning mechanism and the similarity loss is

required to minimize. ITQ method encodes the floating-

point data into binary code by assigning the data to the

vertices of a hyper cubic. However, ITQ adopts a fixed

hyper cubic, which leads the encoding results not adaptive

to the data distribution [9]. Therefore, the encoding results

would undermine the ANN search performance. To get rid

of the restriction of the fixed encoding centres, SBWHD

takes the data distribution into consideration and demands

the nearest neighbours should have the same binary code.

As the binary bits are discrete integer values and have the

same weight value, the data pairs with different binary

codes may share the same Hamming distance value. In the

Hamming space, binary code methods randomly return the

samples which have the same Hamming distance value to

the query sample. As a result, the ANN search

performance of binary code methods, LSH [5] and ITQ [7],

are relative inferior. To fix the above problem, the bitwise

weights methods WhRank [13] and QRank [14] are

utilized to improve the ANN search performance of the

binary code methods. The proposed methods SBWHD,

WhRank [13] and QRank [14] learn bitwise weights and

utilize the weighted Hamming distance to further

distinguish the ranking orders of the data points. WhRank

[13] learns the weighted Hamming distance according to

the data distribution. QRank [14] demands the bitwise

weights should be sensitive to the query sample. SBWHD

also learns the query sensitive bitwise weights to make the

weighted Hamming distance well approximate the original

Euclidean similarity degree. In addition, SBWHD

emphasizes preserving the similarity relationship Among

the data points, which has a small Hamming distance to the

query sample. The final experimental results also show

that SBWHD achieves the best performance. Furthermore,

the comparative experiments with a different number of

true nearest neighbours prove that the ANN search

performance of the proposed SBWHD method is stable.

Zhen Wang & Baomin Shao / IJCTT, 68(7), 49-55, 2020

55

IV. CONCLUSION

As the discrete integer binary code makes many data

points share the same Hamming distance to the query

sample, their ranking orders are ambiguous in the initial

retrieval results. To solve the above problem, the spherical

bitwise weighted Hamming distance (SBWHD) method is

proposed to assign different weight values to each binary

bit in this paper. Usually, a two-step learning mechanism is

adopted to learn the bitwise weights, which firstly employs

the existing hashing algorithms to generate binary code

and learns bitwise weights according to the fixed binary

codes. Different from the two-step mechanism, SBWHD

simultaneously learns hashing functions and bitwise

weight functions by an iterative optimization mechanism.

When the algorithm converges, the bitwise weights and

binary codes can well cooperate in boosting the ANN

search performance. In this paper, the bitwise weights are

required to be sensitive to query samples and adaptive to

data distribution. The ANN search task considers the

samples with minimal distance value to the query data as

the nearest neighbours. To satisfy the above requirement of

the ANN search task, SBWHD defines a spherical and sets

the similarity threshold as a spherical radius. During the

training process, the nearest neighbours are required to

locate inside of the spherical, and the dis-similar data

points are demanded to locate outside of the spherical.

With the assistance of the above measure, SBWHD can

well preserve the similarity relationship among the data

points at the retrieval results’ top position. When searching

the nearest neighbours, the initial retrieval results obtained

based on Hamming distances will be further re-sorted

according to the weighted Hamming distances. The final

experimental results show that the ANN search

performances of SBWHD are superior.

ACKNOWLEDGMENT

This work is supported by the National Nature Science

Foundation of China (No. 61841602) and the Nature

Science Foundation of Shandong Province (No.

ZR2018PF005).

REFERENCES
[1] R. Kang, Y. Cao, M. Long, J. Wang and P. S. Yu, Maximum-

Margin Hamming Hashing, in Proc. ICCV’19, (2019)8251.

[2] Z. Wang, F. Sun, L. Zhang and P. P. Liu, Minimal residual ordinal

loss hashing with an adaptive optimization mechanism, EURASIP
Journal on Image and Video Processing, (2020)1-11.

[3] Z. Wang, F. Sun, L. Zhang and L. Wang, Top position-sensitive

ordinal relation preserving bitwise weight for image retrieval,
Algorithms, 13(2020)18.

[4] Z. Wang, L. Zhang, F. Sun, L. Wang and S. Liu, Relative

similarity preserving bitwise weights generated by an adaptive
mechanism, Multimedia Tools and Applications, 78(2019) 24453-

24472.

[5] M. Datar, N. Immorlica, P. Indyk and V. S. Mirrokni, Locality-
sensitive hashing scheme based on p-stable distributions in Proc.

[C]. SCG’20, (2004) 253-262.

[6] Y. Weiss, A. Torralba and R. Fergus, Spectral hashing, in Proc.

NIPS, (2008) 1753-1760.

[7] Y. Gong and S. Lazebnik, Iterative Quantization: A procrustean

approach to learning binary codes, in Proc. CVPR, (2011) 817-824.
[8] W. Liu, J. Wang, S. Kumar and S. F. Chang, Hashing with graphs,

in Proc. ICML’ 28 (2011) 1-8.

[9] K. He, F. Wen and J. Sun, K-means hashing: an affinity-
preserving quantization method for learning compact binary codes,

in Proc. CVPR, (2013) 2938-2945.

[10] M. Norouzi and D. J. Fleet, Minimal loss hashing for compact
binary codes, in Proc. ICML’28, (2011) 353-360.

[11] J. Wang, W. Liu, A. X. Sun and Y. G. Jiang, Learning hash codes

with listwise supervision, in Proc. ICCV, (2013) 3032-3039.
[12] J. Wang, J. Wang, N. Yu, and S. Li, Order preserving hashing for

approximate nearest neighbour search, in Proc. ICM’21, (2013)

133-142.
[13] L. Zhang, Y. Zhang, J. Tang, K. Lu and Q. Tian, Binary code

ranking with weighted hamming distance, in Proc. CVPR, (2013)

1586-1593.
[14] T. Ji, X. Liu, C. Deng, L. Huang, and B. Lang, Query-Adaptive

Hash Code Ranking for Fast Nearest Neighbor Search, in Proc.

ICM, (2014) 1005-1008.
[15] H. Fu, X. Kong, and Z. Wang, Binary code reranking method with

weighted hamming distance, Multimedia Tools and Applications,

75 (2016) 1391-1408.
[16] X. Wang, Y. Shi, and K. M. Kitani, Deep Supervised Hashing with

Triplet Labels, in Proc. ACCV, (2016) 70-84.

[17] F. Cakir and S. Sclaroff, Adaptive Hashing for Fast Similarity
Search, in Proc. CVPR, (2015) 1044-1052.

[18] Dr M E Purushoththaman, Dr Bhavani Buthtkuri, Effective

Multiple Verification Process Ensuring Security And Data
Accuracy In Cloud Environment Storage SSRG International

Journal of Computer Science and Engineering 6(7)(2019)

