
International Journal of Computer Trends and Technology                                              Volume 68 Issue 7, 49-55, July 2020 

ISSN: 2231-2803/  https://doi.org/10.14445/22312803/IJCTT-V68I7P108                                              © 2020 Seventh Sense Research Group® 

 

 

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Spherical Bitwise Weighted Hamming Distance 

Method 
 

Zhen Wang
1
, Baomin Shao

2
 

 

1,2
phd, School of computer science and technology, Shandong University of Technology 

Zibo, Shandong Province, China 
 

Received Date: 07 June 2020 

Revised Date: 23 July 2020 

Accepted Date: 25 July 2020 

 

Abstract - In recent years, hashing algorithms that can 

map floating point data into compact binary code have 

been adopted to achieve the approximate nearest 

neighbour (ANN) search task in the Hamming space. 

However, binary codes are discrete integer values, which 

makes the data pairs with different binary codes would 

share the same Hamming distance. To solve the above 

problem, the spherical bitwise weighted Hamming distance 

(SBWHD) method is proposed to assign different weight 

values to each binary bit. Thus, the weighted Hamming 

distance can be utilized to distinguish the ranking orders 

among the data points which have the same Hamming 

distance to the query sample. As the ANN search task 

mainly focuses on the samples at the top position of 

retrieval results, SBWHD learns the hashing and bitwise 

weight functions which obey a spherical distribution. 

During the training process, the similarity threshold is 

considered as radius, and the nearest neighbours are put 

inside the spherical. To further guarantee the ANN search 

performance, both the Hamming distance and the weighted 

Hamming distance are required to approximate the 

corresponding Euclidean distance. During the training 

process, SBWHD simultaneously learns the hashing 

functions and bitwise weight functions by an iterative 

optimization mechanism. When the algorithm converges, 

the bitwise weights can effectively improve the ANN search 

performance obtained based on the binary codes. The final 

comparative experiments in three large scale datasets 

prove that the ANN search performance of SBWHD is 

superior. 

 

Keywords - approximate nearest neighbour search, binary 

code, hashing algorithm, bitwise weight method.  

 
I. INTRODUCTION 

Generally, the high dimensional floating-point data is 

directly utilized to fulfil the approximate nearest neighbour 

(ANN) search task, and the nearest neighbour is returned 

according to the Euclidean distance. As the above ANN 

search mechanism has high time complexity, it cannot fast 

respond to the ANN search task in a large scale dataset. To 

fix this problem, hashing algorithms [1-4] are proposed to 

encode the raw data into compact binary code. Therefore, 

the ANN search task can be achieved based on the 

Hamming distance, which has low computational 

complexity. According to the training process, the existing 

hashing algorithms can be roughly divided into data-

independent hashing [5] and data-dependent hashing [6, 7]. 

The data-independent hashing algorithm, such as local 

sensitive hashing (LSH) [5], randomly generates linear 

projection functions and encodes the data according to the 

projection results. As the training samples does not involve 

in the learning process of the LSH method, the generated 

binary codes may not be adaptive to data distribution. Thus, 

the ANN search performance cannot be obviously 

improved as the length of binary bits increases. 

 

To achieve an excellent ANN search performance 

with compact binary code, the data-dependent hashing 

algorithms utilize a machine learning mechanism to 

generate hashing functions. Spectral hashing [6] and 

anchor graph hashing [8] establish a similarity graph and 

generate binary codes through the graph partition 

mechanism. However, both spectral hashing [6] and 

anchor graph hashing [8] demand the distribution of 

training samples should be uniform. In practice, the real 

datasets do not obey the above assumption. The iterative 

quantization (ITQ) method [7] maps the data into the 

vertices of a fixed hyper cubic, which leads the encoding 

results not adaptive to data distribution. To get rid of the 

restriction of data distribution, K-means hashing [9] learns 

encoding centres by minimizing quantization error and 

making the Hamming distances approximate the original 

Euclidean distances by minimizing the similarity loss. The 

above-mentioned hashing algorithms [5-9] directly utilize 

the data pair’s Hamming distance to approximate their 

Euclidean distance. Recently, another kind of hashing 

algorithm which aims to preserve the Euclidean ordinal 

relationship in the Hamming space is proposed. Minimal 

loss hashing [10] defines listwise loss as an objective 

function that penalizes the similar data pairs with large 

Hamming distance and the dis-similar data pairs with 

minimal Hamming distance. Listwise loss hashing [11] 

defines the similarity loss function based on triplet 

elements, and it requires the Hamming distance of similar 

data pair should be minimal than that of dissimilar data 

pair. Order preserving hashing [12] divides data points into 

different categories according to their distances to the 

query sample. During the training process, order-

preserving hashing [12] tries to make the categories in the 

Hamming space and Euclidean space be consistent with 

each other. 
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Fig. 1 SBWHD iteratively learns the hashing functions and bitwise 

weight functions 

The binary code methods treat each binary bit equally 

and assign them the same weight value. However, the 

binary codes have a discrete integer value. As a result, 

many data pairs with different binary codes would share 

the same Hamming distance to the query sample. To 

further distinguish the ranking orders among the data 

points which have the same Hamming distance to the 

query sample, the bitwise weight methods, such as 

WhRank [13] and QRank [14], assign different weight 

values to each binary bit [3]. WhRank [13] utilizes the data 

pair’s weighted Hamming distance to approximate their 

Euclidean distance. QRank [14] aims to learn the query 

sensitive bitwise weights. 

 

The ANN search task pays more attention to the top 

position of the retrieval results, but the above hashing 

algorithms and bitwise weight methods rarely take the 

samples’ position into consideration during the training 

process. To fix the above problem, a bitwise weight 

method termed the spherical bitwise weighted Hamming 

distance (SBWHD) method is proposed in this paper. 

SBWHD emphasizes preserving the similarity relationship 

among the data points at the top position. The learning 

process of SBWHD is shown in Fig. 1. SBWHD iteratively 

learns binary codes and bitwise weights. When the 

algorithm converges, SBWHD can get an excellent ANN 

search performance in both the Hamming and weighted 

Hamming spaces. 

 

The main contributions of this paper can be concluded 

as follows. 

1. The samples’ positions are taken into consideration 

during learning hashing functions and bitwise weight 

functions. SBWHD can well preserve the similarity 

relationship among the data points at the top position, 

which is consistent with the nature of the ANN search task. 

2. Different from the general two-step mechanism, 

SBWHD simultaneously learns the hashing functions 

and bitwise weight functions by an iterative 

optimization mechanism. 

 

3. SBWHD demands the data pair’s weighted Hamming 

distance can well approximate their original Euclidean 

distance. As a result, SBWHD can fulfil the ANN 

search task in the Hamming space. 

 
II. SPHERICAL BITWISE WEIGHTED HAMMING 

DISTANCE METHOD 

To fulfil the ANN search task, the nearest neighbours 

should have a minimal Hamming distance value to the 

query sample [9]. In contrast, the distance value between 

the dis-similar data point and the query sample should be 

relatively larger. To satisfy the above requirement, 

SBWHD learns the hashing and bitwise weight functions, 

which obey a spherical distribution. During the training 

process, the nearest neighbours are put inside of the 

spherical, and the dis-similar data points are set outside of 

the spherical [1]. Correspondingly, the similarity threshold 

is defined as the spherical radius. 

 

A. The ANN Search Procedure in the Weighted 

Hamming Space 

Given the floating-point data set X={x1, ⋯, xn}∈R
n∙d

 

(d is the dimension of data point), hashing algorithms map 

the data xi into m-bit binary code B={b1, ⋯, bm} according 

to the projection sign as in Eq. (1). {f1, ⋯, fm} represent the 

linear hashing functions. 

 1{sgn( ( )), ,sgn( ( ))}i m iB f x f x  (1) 

After mapping the data into binary code, their Hamming 

distance can be computed by Eq. (2). 

 
1

( , ) ( ) ( )
M

H i j m i m j

m

D x x b x b x


    (2) 

Based on the definition of binary code in Eq. (1), it is 

clearly known that the values of binary codes are discrete 

integers, and each binary bit has the same weight value. As 

a result, the data points with different binary codes would 

share the same Hamming distance to the query sample. A 

simple example is given below. If the data points x1, x2 and 

x3 are separately encoded as 3-bit binary codes 001, 010 

and 100, all the Hamming distances among them are 2. 

When querying, the nearest neighbours of x1, x2 and x3 are 

simultaneously returned, and it’s hard to distinguish their 

ranking orders in the ANN search results. To fix the above 

problem, SBWHD assigns different weight values W={w1, 

⋯ , wM} to each binary bit as in Eq. (3), and the bitwise 

weight function relates to the query sample. 

 ( )m m queryw g x   (3) 

According to Eq. (3), the weighted Hamming distance of a 

data pair can be computed by Eq. (4). 

 
1

( , ) ( ) ( ( ) ( ))
M

W

H i j m i m i m j

m

D x x g x b x b x


     (4) 

With the assistance of bitwise weighted Hamming distance, 

the ANN search performance obtained based on binary 

codes can be further boosted, as shown in Fig. 2. Firstly, 

the neighbours with minimal Hamming distance to the 

query sample are retrieved. Then, the data points sharing 
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the same Hamming distance to the query sample are re-

sorted according to the weighted Hamming distances. 

 
Fig. 2 The initial retrieval results are re-sorted according to the 

weighted Hamming distance 

 

B. The Similarity Preserving Restriction Based on 

Probability Statistic 

To achieve an excellent ANN search performance, the 

similarity relation should be well preserved in the 

weighted Hamming spaces [14, 15]. Similar to the SNE 

algorithm, the distance values are treated as the similarity 

degree, and the probability value pij and qij are separately 

utilized instead of the Euclidean distance and weighted 

Hamming distance. Therefore, the excellent hashing and 

bitwise weight functions can be generated by making the 

Hamming and Euclidean probability values resemble each 

other. 

 

Here, the Kullback-Leibler is adopted to measure the 

mismatch between the Hamming probability values and 

the corresponding Euclidean probability values. The 

definition is shown in Eq. (5).  

 
,

log
N

ij

ij

i j ij

p
KL p

q
   (5) 

During the training procedure, the Euclidean distance 

value is directly assigned to the probability pij. Then, the 

key problem is how to compute the value of probability qij, 

and it will be discussed in section 2.3. 

C. Spherical Binary Code and Bitwise Weight 

If directly utilizing the objective function in Eq. (5) to 

learn binary code and bitwise weights, there exists a 

problem as described below. 

 

When xi and xj has a large Euclidean distance, the 

learnt bitwise weighted Hamming distance can well 

approximate the corresponding Euclidean distance by 

directly minimizing the value of the KL objective function. 

In contrast, when xj is the nearest neighbour of xi, and they 

have a small Euclidean distance value, the KL objective 

function always has a minimal value, and it fails to learn 

the bitwise weights. Therefore, the objective function 

should be re-defined according to the similarity 

relationship of the data pair (xi, xj) as in Eq. (6). For dis-

similar data pairs, (dT-pij) and (1-qij) are separately utilized 

instead of the original parameter. 

 
1 1

log ( , )

( ) log ( , )
1

ij

ij i j T
N N

ij

i j T ij

T ij i j T

ij

p
p d x x d

q
KL

d p
d p d x x d

q

 





 

  
 

  (6) 

When the data pairs are nearest neighbours, dT-pij has 

a large value. To minimize the objective value in Eq. (6), 

the value of 1-qij should be enlarged. As a result, the value 

of qij is minimized to satisfy the requirement of preserving 

the similarity relationship. 

During the training process, the two sub-functions in Eq. 

(6) are integrated as in Eq. (7). 

 
1 1

1 1
( log ( ) log )

1

N N

ij T ij

i j ij ij

KL r d d d
q q 

  


   (7) 

The constant terms are omitted, and the coefficient r is 

employed to balance the effects of similar data pairs and 

dis-similar ones. In this paper, r represents the ratio value 

between the number of similar data pairs and that of dis-

similar data pairs. 

Usually, the value of qij is defined as in Eq. (8). 

 
1

1 exp( 2 ( , ))
ij w

h i j

q
M d x x


 

  (8) 

In Eq. (8), M is the number of binary bits, and dh
w
(xi, xj) 

computes the weighted Hamming distance between xi and 

xj. 

 

Here, the bitwise weighted Hamming distance is 

adopted to distinguish the similarity degree among the data 

pairs which have the same Hamming distance value. The 

weighted Hamming distance between the nearest 

neighbour and the query sample should be minimal than 

the threshold. In contrast, the distance value among dis-

similar data points should be larger than the threshold 

value. To satisfy the above requirement, the distribution of 

the data points should be spherical in the Hamming space, 

and the similarity threshold value is defined as the radius. 

Therefore, the probability qij can be rewritten as in Eq. (9). 

 

1
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i j Tw H
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T h i j
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 
 
 

 (9) 

In Eq. (9), max(∙,∙) returns the relative larger value, and 

dT
H
 is the threshold value in the weighted Hamming space. 

Generally, the value of dT
H
 is set as 2. 

 

D. The Objective Function and Optimization Mechanism 

During the process of learning spherical bitwise 

weights and binary codes, the definition of qij in Eq. (9) is 

utilized to rewrite the objective function as below. 

 
,

,

log(1 max(0, ( , ) ))

1
( ) log(1 )

max( , ( , ))

N
w H

ij h i j T

i j

N

T ij H w
i j T h i j

L r d d x x d

r d d
d d x x

   
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


 (10) 

In Eq. (10), the weighted Hamming distance is computed 

based on the binary code, which has discrete integer values. 

As a result, it’s NP hard to directly optimize the objective 
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function. To fix this problem, the discrete encoding 

function is relaxed to a continuous form, as shown in Eq. 

(11). 

 
( ) sgn( )

tanh( )

T

m m

T

m

b x u x

u x




  (11) 

Based on the definition of binary encoding in Eq. (11), the 

weighted Hamming distance is rewritten as in Eq. (12). 
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Thanks to the above relaxation mechanism, the gradient 

descent algorithm can be utilized to learn the hashing 

functions and bitwise weight functions. 

 

III. EXPERIMENTS AND RESULTS 

This section introduces a comparative experimental 

setting and the ANN search results. 

 

A. Data Sets and Evaluation Standard 

The comparative experiments are conducted in three 

widely used large scale image datasets, including NUS-

WIDE [16], 22K LableMe [17] and ImageNet 100. To 

train bitwise weight hashing functions and evaluate the 

ANN search performance, each data set is divided into 

three sub-sets, the training dataset, the query dataset and 

the test dataset. The training dataset is utilized to learn the 

hashing and bitwise weight functions. The query dataset 

includes the query samples, and their nearest neighbours 

are stored in the test dataset. During the evaluation process, 

the nearest neighbours of the query samples are retrieved 

from the corresponding test dataset. 

The total number of images in the NUS-WIDE dataset [16] 

is 270 thousand, and the images are randomly selected 

from the Flickr image dataset. For the NUS-WIDE dataset 

[16], 190 thousand images are randomly picked as the test 

dataset. Correspondingly, 50 thousand images are 

considered as the query samples, and the remaining 30 

thousand images are utilized for training the bitwise 

weight functions and hashing functions in the NUS-WIDE 

dataset [16]. 22 thousand images without labels are stored 

in the 22K LabelMe dataset, and the number of images in 

the test dataset is 20 thousand. 2 thousand images are 

utilized as query samples, and 5 thousand images are 

randomly picked to learn the bitwise weight functions. 100 

kinds of images in ImageNet are randomly picked to form 

the ImageNet 100 dataset. The number of the training 

images is 30 thousand, and 130 thousand images are 

considered as the test dataset. 10 thousand images are 

utilized as the query dataset. 

To evaluate the ANN search performance, the metric 

evaluation recall is adopted to measure the ratio of the 

retrieved positive samples to the total amount of the true 

nearest neighbours. The definition of recall is shown in Eq. 

(13). 

 
#( )

#( )

retrieved positive samples
recall

total positive samples
   (13) 

#(retrieved positive samples) represents the number of 

retrieved positive samples. #(total positive samples) means 

the amount of the nearest neighbours to the query sample 

in the test dataset.  

 

B. Experiments and Experimental Results 
The performance of hashing algorithms and bitwise 

weight methods is evaluated by performing the ANN 

search of images in three widely large scale image datasets. 

The experimental results are shown in Figs.3-8. 

 

 
Fig. 3 The recall curves in the 22K Labelme dataset and 100 samples with minimal distance are defined as the true nearest neighbours.
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Fig. 4 The recall curves in the NUS-WIDE dataset and 100 samples with minimal distance are defined as the true nearest neighbours. 

 
Fig. 5 The recall curves in ImageNet 100 dataset and 100 samples with minimal distance are defined as the true nearest neighbours. 

 

In Figs. 3, 4 and 5, the 100 samples with the nearest 

Euclidean distance to the query image are defined as the 

nearest neighbours. 

 

To further prove the stability of the ANN search 

performance of SBWHD, the nearest neighbours are re-

defined as the 1000 samples with minimal Euclidean 

distance values to the query sample. The recall cures of the 

comparative ANN search results are shown in Figs. 6, 7, 8. 

 

 
Fig. 6 The recall curves in the 22K Labelme dataset and 1000 samples with minimal distance are defined as the true nearest neighbours.
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Fig. 7 The recall curves in the NUS-WIDE dataset and 1000 samples with minimal distance are defined as the true nearest neighbours.

 
Fig. 8 The recall curves in ImageNet 100 dataset and 1000 samples with minimal distance are defined as the true nearest neighbours. 

 

The above comparative ANN search results have 

shown that the proposed spherical bitwise weighted 

Hamming distance (SBWHD) method achieves the best 

ANN search performance. Furthermore, two kinds of ANN 

search experiments with a different number of nearest 

neighbours tell that the ANN search performance of the 

SBWHD method is stable. 

 

For the comparative experiments, the baseline 

methods include the binary code methods (LSH and ITQ) 

and the bitwise weight methods (WhRank and QRank). 

The classical method, local sensitive hashing (LSH) [5], 

does not own the training process. LSH [5] randomly 

generates the hashing functions, which are independent of 

the training dataset. As a result, LSH has an inferior ANN 

search performance, and its ANN search performance 

cannot obviously improve as the length of binary code 

increases [6]. To fix the above problem, ITQ [7] and the 

proposed SBWHD method learn hashing functions by 

machine learning mechanism and the similarity loss is 

required to minimize. ITQ method encodes the floating-

point data into binary code by assigning the data to the 

vertices of a hyper cubic. However, ITQ adopts a fixed 

hyper cubic, which leads the encoding results not adaptive 

to the data distribution [9]. Therefore, the encoding results  

would undermine the ANN search performance. To get rid 

of the restriction of the fixed encoding centres, SBWHD 

takes the data distribution into consideration and demands 

the nearest neighbours should have the same binary code. 

As the binary bits are discrete integer values and have the 

same weight value, the data pairs with different binary 

codes may share the same Hamming distance value. In the 

Hamming space, binary code methods randomly return the 

samples which have the same Hamming distance value to 

the query sample. As a result, the ANN search 

performance of binary code methods, LSH [5] and ITQ [7], 

are relative inferior. To fix the above problem, the bitwise 

weights methods WhRank [13] and QRank [14] are 

utilized to improve the ANN search performance of the 

binary code methods. The proposed methods SBWHD, 

WhRank [13] and QRank [14] learn bitwise weights and 

utilize the weighted Hamming distance to further 

distinguish the ranking orders of the data points. WhRank 

[13] learns the weighted Hamming distance according to 

the data distribution. QRank [14] demands the bitwise 

weights should be sensitive to the query sample. SBWHD 

also learns the query sensitive bitwise weights to make the 

weighted Hamming distance well approximate the original 

Euclidean similarity degree. In addition, SBWHD 

emphasizes preserving the similarity relationship Among 

the data points, which has a small Hamming distance to the 

query sample. The final experimental results also show 

that SBWHD achieves the best performance. Furthermore, 

the comparative experiments with a different number of 

true nearest neighbours prove that the ANN search 

performance of the proposed SBWHD method is stable. 
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IV. CONCLUSION 

As the discrete integer binary code makes many data 

points share the same Hamming distance to the query 

sample, their ranking orders are ambiguous in the initial 

retrieval results. To solve the above problem, the spherical 

bitwise weighted Hamming distance (SBWHD) method is 

proposed to assign different weight values to each binary 

bit in this paper. Usually, a two-step learning mechanism is 

adopted to learn the bitwise weights, which firstly employs 

the existing hashing algorithms to generate binary code 

and learns bitwise weights according to the fixed binary 

codes. Different from the two-step mechanism, SBWHD 

simultaneously learns hashing functions and bitwise 

weight functions by an iterative optimization mechanism. 

When the algorithm converges, the bitwise weights and 

binary codes can well cooperate in boosting the ANN 

search performance. In this paper, the bitwise weights are 

required to be sensitive to query samples and adaptive to 

data distribution. The ANN search task considers the 

samples with minimal distance value to the query data as 

the nearest neighbours. To satisfy the above requirement of 

the ANN search task, SBWHD defines a spherical and sets 

the similarity threshold as a spherical radius. During the 

training process, the nearest neighbours are required to 

locate inside of the spherical, and the dis-similar data 

points are demanded to locate outside of the spherical. 

With the assistance of the above measure, SBWHD can 

well preserve the similarity relationship among the data 

points at the retrieval results’ top position. When searching 

the nearest neighbours, the initial retrieval results obtained 

based on Hamming distances will be further re-sorted 

according to the weighted Hamming distances. The final 

experimental results show that the ANN search 

performances of SBWHD are superior. 
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